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A mathematical model is presented for the propagation of structural waves on an
in"nitely long, periodically supported Timoshenko beam. The wave types that can exist on
the beam are bending waves with displacements in the horizontal and vertical directions,
compressional waves and torsional waves. These waves are a!ected by the periodic supports
in two ways: their dispersion relation spectra show passing and stopping bands, and
coupling of the di!erent wave types tends to occur. The model in this paper could represent
a railway track where the beam represents the rail and an appropriately chosen support type
represents the pad/sleeper/ballast system of a railway track. Hamilton's principle is used to
calculate the Green function matrix of the free Timoshenko beam without supports. The
supports are incorporated into the model by combining the Green function matrix
with the superposition principle. Bloch's theorem is applied to describe the periodicity of
the supports. This leads to polynomials with several solutions for the Bloch wave number.
These solutions are obtained numerically for di!erent combinations of wave types.
Two support types are examined in detail: mass supports and spring supports. More
complex support types, such as mass/spring systems, can be incorporated easily into
the model.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper presents a mathematical model for the propagation of structural waves on an
in"nitely long, periodically supported Timoshenko beam. Several wave types can exist on
the beam. These are bending waves with displacements in the horizontal and vertical
direction, compressional waves and torsional waves. The waves are assumed to be
harmonic with the same frequency. On a free beam without supports, these waves would
propagate independently of each other with wavelengths depending on the geometry and
material of the beam. On a periodically supported beam, which forms a periodic system,
new e!ects occur: (1) the supports in#ict a passing/stopping band (also called
attenuation/propagation zone) behaviour on the waves; (2) the supports tend to couple
di!erent wave types if more than one wave type is present.
A Timoshenko beam is used in the model, rather than an Euler}Bernoulli beam.

Timoshenko theory is more comprehensive than the Euler}Bernoulli theory in that the
e!ects of shear deformation and rotary inertia, which a!ect bending waves, are included. It
thus has the advantage of extending the validity of the model to a higher frequency range
than would be the case with the Euler}Bernoulli theory.
The model presented in this paper o!ers a choice of di!erent support types. A beam with

mass supports, and a beam with spring supports are considered in detail. Supports in the
form of mass/spring systems can easily be incorporated.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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A real engineering structure, which could be represented by a periodically supported
Timoshenko beam, is a railway track. The beam represents the rail, and this model would be
valid at low and medium frequencies where cross-sectional deformation of the rail does not
occur. At each support point, the beam is connected to a spring/mass/spring system, where
the upper spring represents a rail pad, the mass represents a sleeper, and the lower spring,
which rests on a rigid surface, represents the ballast bedded on compacted ground with
a smooth surface.
A number of other authors have produced models of rail vibrations [1}4], which are

limited to vertical bending waves.Munjal and Heckl [1] modelled the rail as an Euler beam
on periodic mass supports and analyzed the propagation of vertical bending waves with
a transfer matrix method. Kurze [2] compared various aspects of rail models, in particular,
discrete supports versus a continuous rail support (Winkler foundation), and an
Euler}Bernoulli beam versus a Timoshenko beam. In Nordborg's work [3], the rail is
modelled as an Euler beam, supported on #exible sleepers that can perform bending
motion. Hamet [4] extended Nordborg's work in that he used Timoshenko theory instead
of Euler}Bernoulli theory for the rail; however, he did not include #exible sleepers in his
model, but modelled the sleepers simply as rigid masses.
The behaviour of coupled waves on a periodically supported rail has received only

limited attention so far. Coupled bending-compressional wave motion is analyzed in
reference [5] for an Euler beam with spring-mounted masses. In a forerunner of the present
paper, Heckl [6] studied the coupling of vertical bending waves, horizontal bending waves
and torsional waves, but not compressional waves, on a periodically supported
Timoshenko beam.
Mead's studies [7}10] of wave propagation on more general periodic engineering

structures have provided valuable insight into multiple coupling of waves. An extensive
literature review on the subject can be found in reference [7]. Mead [8] predicted
the number of free wave types that can propagate along a periodic structure. The
bounding frequencies of passing and stopping bands are calculated in reference [9]. The
propagation of vertical bending waves along a periodic Timoshenko beam is analyzed in
reference [10].
The studies by Mace [11, 12] of the bending vibration of in"nite #uid-loaded plates with

periodic line supports are also of interest. Mace's mathematical approach contains some
elements that are also used in this paper, such as Fourier transforms and Bloch's theorem
(also called Floquet's principle). The mathematical approach of Nordborg [3], Hamet [4]
and Mead [10] is similar to that used here in that Green functions, the superposition
principle and Bloch's theorem are used.
Their studies are extended in the present paper by allowing beam deformations in all

three spatial directions, nut just in the vertical direction. Instead of the Green function, there
is a Green function matrix. This is a 3�3 matrix with elements that are given by the
responses in the x, y and z directions (lateral, vertical and axial direction) to unit point forces
in the x, y and z directions. The elements of the Green function matrix are calculated in
section 2 using Hamilton's principle. This section is taken from a report by Heckl [13],
which is repeated here, to make it available in the open literature.
In section 3, the beam supports are built into the mathematical model. This is done by

combining the Green function matrix with the superposition principle. Free waves on the
periodically supported beam are then studied by application of Bloch's theorem. Di!erent
combinations of wave types will be examined. Numerical results are presented in section 4
in the form of spectra of the Bloch wave number (also called the propagation constant). The
focus is on a beam with mass supports and one with spring supports. The behaviour for
other support types is discussed brie#y.



Figure 1. Geometry of the Timoshenko beam.

Figure 2. Notation for the di!erent wave types on the beam: (a) cross-sectional rotation due to a torsional wave;
(b) bending deformation in the y direction.
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2. CALCULATION OF THE GREEN FUNCTION MATRIX OF THE
UNSUPPORTED TIMOSHENKO BEAM

2.1. GENERAL CONSIDERATIONS

A uniform, in"nitely long, Timoshenko beam is considered, with width h
�
and height h

�
(see Figure 1). A force vector F with components (F

�
, F

�
, F

�
) acts at a point r�"(x�, y�, z�).

The observer point is denoted by r"(x, y, z), and the displacement at this observer point is
denoted by a vector with a lateral, vertical and axial component (�, �, �).
The components of the displacement vector are given by

� (x, y, z)"�
�
(z)!y�

��
(z), � (x, y, z)"�

�
(z)#x�

��
(z), (2.1a, b)

�(x, y, z)"�
�
(z)#x�

��
(z)#y�

��
(z). (2.1c)

�
�
, �

�
and �

�
are the displacements of the centreline M (see Figure 1) of the beam. �

��
is

the angle of torsion (see Figure 2(a)), �
��
and �

��
are the angles of rotation about the x- and

y-axis respectively (see Figure 2(b)). These angles of rotation are partly due to bending and
partly due to transverse shear deformation. The three centreline displacements and three
angles form a set of six independent "eld quantities, which fully describe the motion of the
beam.
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The Green function here is a 3�3 matrix, which relates the force vector F to the resulting
displacements,

�

�

�

"

G
��

G
��

G
��

G
��

G
��

G
��

G
��

G
��

G
��

F
�

F
�

F
�

. (2.2)

The elements of this Green function matrix are functions of r and r�, e.g., G
��
(r; r�). Their

calculation will be done in two steps. In a "rst step (see section 2.2), a force distribution
along a line parallel to the z-axis is considered. Hamilton's principle will be applied to
calculate the response of the beam to this loading. In a second step (see section 2.3), a point
force is considered and the Fourier transform method will be applied to calculate the
response of the beam to this point force. The time dependence is harmonic, described by the
factor e����, which will be dropped throughout.

2.2. BEAM RESPONSE TO A SINUSOIDALLY DISTRIBUTED LOADING

The loading has vector components F
�l
, F

�l
, F

�l
; they all have the z-dependence e���������

and can be written as

F
�l

"F
�
e���������, F

�l
"F

�
e���������, F

�l
"F

�
e���������. (2.3a}c)

F
�
, F

�
, F

�
are the force amplitudes. The same z-dependence is imposed on the displacements

and angles, which can thus be written as

�
�

"A
�
e��������� (bending displacement in the x direction), (2.4a)

�
�

"A
�
e��������� (bending displacement in the y direction), (2.4b)

�
�

"A
�
e��������� (compressional displacement), (2.4c)

�
��

"A
�
e��������� (torsion), (2.4d)

�
��

"A
	
e��������� (bending and transverse shear in the x direction), (2.4e)

�
��

"A


e��������� (bending and transverse shear in the y direction). (2.4f )

A
�
}A



are complex amplitudes, which are unknown at this stage and will be determined

with Hamilton's principle.
Hamilton's principle states that the motion of a mechanical system is such that the time

integral

�"� (E���
!E

	
�
#=

���
) dt is a minimum, (2.5)

where E
���

is the kinetic energy of the system, E
	
�

is its potential energy and =
���

is the
external work applied to the system (see references [14, chapter 3.2], or [15, p. 157]).
This principle will be applied to the Timoshenko beam. First (see section 2.2.1), the

Hamilton integral in equation (2.5) is expressed in terms of the "eld quantities and
subsequently in terms of the unknown amplitudes. Then (see section 2.2.2), the Hamilton
integral is minimized with respect to these amplitudes and a set of equations is obtained,
which determines them fully.
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2.2.1. Calculation of the Hamilton integral

The analysis will be simpli"ed by two assumptions: the shear stress distribution remains
uniform across the cross-section when a bending wave propagates along the beam; the
cross-section does not warp when a torsional wave propagates along the beam.
In e!ect, the Timoshenko correction factor for the shear sti!ness ("rst assumption) and

the correction factor for the torsional sti!ness (second assumption) are set equal to unity.
Both correction factors depend on the cross-sectional shape, and the above assumptions are
unlikely to make any qualitative di!erence to the numerical results for the rectangular beam
considered in section 4.

2.2.1.1. Kinetic energy. The kinetic energy of the beam is expressed as a volume integral
of the kinetic energy density,

E
���

"

�
2 ��� (�Q �#�R �#�Q �) dxdydz. (2.6)

The time integral over E
���
, which, for harmonic time dependence, is equivalent to the time

averageE
���
, is required for equation (2.5). It can easily be shown that time averages over the

product of two harmonic "eld quantities, say f
�
(t)"fK

�
e���� and f

�
(t)"fK

�
e����, can be

written in terms of their complex amplitudes fK
�
and fK

�
,

� f
�
(t) f

�
(t) dt"�

�
Re( fK

�
fK *
�
), (2.7)

where the * denotes the complex conjugate. With this result, one obtains

E
���

"

�
4 ��� ( ��Q � �#��� �#��� ��) dxdydz; (2.8)

the
(
which should denote the complex amplitudes has been dropped.

The time derivatives can be written with equation (2.1) as

��� ��"	� ��
�

!y�
��

��, ��� ��"	� ��
�

#x�
��

��, (2.9a, b)

��� ��"	� ��
�

#x�
��

#y�
��

��. (2.9c)
2.2.1.2. Potential energy. The average potential energy is also calculated from the

corresponding energy density and the use of complex amplitudes,

E
	
�

"�
� ��� (
�

�*
�
#�

��
*
��

#�
��

*
��

#�
��

*
��
) dx dydz. (2.10)



�
and �

�
are the longitudinal stress and longitudinal strain respectively. �

�
is given by

�
�
"

��
�z

"ik
�
(�

�
#x�

��
#y�

��
), (2.11a)

where equation (2.1c) and the assumption of the z-dependence e��������� has been used. The
corresponding strain is given by Hooke's law,



�
"E�

�
. (2.11b)
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E is the Young's modulus. Similarly, the shear strains  and shear stresses � are given by


��

"

��
�y

#

��
�x

"0, �
��

"G
��

"0, (2.12a, b)


��

"

��
�z

#

��
�x

"ik
�
(�

�
!y�

��
)#�

��
, �

��
"G

��
, (2.13a, b)


��

"

��
�z

#

��
�y

"ik
�
(�

�
#x�

��
)#�

��
, �

��
"G

��
. (2.14a, b)

G is the shear modulus; it is related to the Young's modulus E by

G"E/2(1#�) , (2.15)

where � is the Poisson ratio.

2.2.1.3. External work. The line force with components F
�l
, F

�l
, F

�l
acts on the beam

along a line parallel to the z-axis at position x�, y�. It supplies the external work

=
���

"

1

2
Re ���(F�l�*#F

�l
�*#F

�l
�*) �(x!x�) � (y!y�) dxdydz. (2.16)

2.2.1.4. Complete Hamilton integral. With equations (2.8)}(2.14) and (2.16) (after
integration with respect to x and y), the Hamilton integral� in equation (2.5) can be written
as

�"

1

4
	����� ���

�
!y�

��
��#��

�
#x�

��
��#��

�
#x�

��
#y�

��
���dx dydz

!

1

4 ����Ek�
�
��

�
#x�

��
#y�

��
��

#G � ik
�
(�

�
!y�

��
)#�

��
��#G �ik

�
(�

�
#x�

��
)#�

��
���dxdydz

#

1

2
Re��F�l(z)�*(x�, y�, z)#F

�l
(z)�*(x�, y�, z)#F

�l
(z)�*(x�, y�, z)�dz. (2.17)

The integrals over x and y span the cross-sectional area of the beam; only constant, linear
and quadratic terms in x and y occur in the integrand. With

�
����

�����
�

����

�����

dxdy"h
�
h
�
, (2.18a)

�
����

�����
�

����

�����

xdx dy"0, �
����

�����
�

����

�����

ydxdy"0, (2.18b, c)

�
����

�����
�

����

�����

x� dxdy"

h�
�
h
�

12
, �

����

�����
�

����

�����

y� dxdy"

h
�
h�
�

12
, (2.18d, e)
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one can perform the integration over x and y in the triple integrals of (2.17) and write � as

�"

1

4
	��h

�
h
� �� ��

�
��#

h�
�

12
��

��
��#��

�
��#

h�
�

12
��

��
��#��

�
��#

h�
�

12
��

��
��#

h�
�

12
��

��
��� dz

!

1

4
h
�
h
� � �Ek�

� � ��
�

��#

h�
�

12
��

��
��#

h�
�

12
��

��
���

#G�k�� ��
�

��#k�
�

h�
�

12
��

��
��#��

��
��#(ik

�
�
�

�*
��

!ik
�
�*
�

�
��
)�

#G�k�� ��
�

��#k�
�

h�
�

12
��

��
��#��

��
��#(ik

�
�
�

�*
��

!ik
�
�*
�

�
��
)��dz

#

1

2
Re ��F�l (�*�!y��*

��
)#F

�l
(�*

�
#x��*

��
)#F

�l
(�*

�
#x��*

��
#y��*

��
)�dz. (2.19)

The single integral in equation (2.17) has been rewritten with use of equations (2.1a}c).
Next, � will be expressed in terms of the amplitudes A

�
}A



and F

�
, F

�
, F

�
by substituting

equations (2.3a}c) and (2.4a}f ) into equation (2.19). Any z-dependence in the integrand of
(2.19) cancels out, so the integration over z can be ignored, and one obtains

�"

1

4
	��h

�
h
�� �A

�
��#�A

�
��#�A

�
��#

h�
�

12
( �A

�
��#�A

	
��)#

h�
�

12
( �A

�
��#�A



��)�

!

1

4
h
�
h
�
Ek�

� ��A�
��#

h�
�

12
�A

	
��#

h�
�

12
�A



���

!

1

4
h
�
h
�
G�k�� ( �A�

��#�A
�
��)#k�

� �
h�
�

12
#

h�
�

12� �A
�
��#�A

	
��#�A



��

#ik
�
(A

�
A*

	
!A*

�
A

	
)#ik

�
(A

�
A*



!A*

�
A



)�

#

1

4�F� (A*
�
!y�A*

�
)#F*

�
(A

�
!y�A

�
)

#F
�
(A*

�
#x�A*

�
)#F*

�
(A

�
#x�A

�
)

#F
�
(A*

�
#x�A*

	
#y�A*



)#F*

�
(A

�
#x�A

	
#y�A



)�. (2.20)

2.2.2. Minimization of the Hamilton integral

The Hamilton integral � is a quadratic function of the amplitudes A
�
}A



and has

a unique minimum. This minimum can be found by setting the derivatives of � with respect
to A

�
}A



equal to zero. The amplitudes are generally complex, so the di!erentiation has to

be performed with respect to both the real and imaginary parts of these amplitudes for the
minimization process. The following notation is used:

�
�A

�

"

�
� (ReA

�
)
#i

�
�(ImA

�
)
, etc. (2.21)
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The following relationships are valid, which simplify the di!erentiation considerably:

��A
�
��

�A
�

"2A
�
, etc.,

� (A
�
A*

	
!A*

�
A

	
)

�A
�

"!2A
	
, etc., (2.22a, b)

� (A
�
F*
�
#A*

�
F
�
)

�A
�

"2F
�
, etc. (2.22c)

One then "nds for the derivatives of �

��
�A

�

"�
�
	��h

�
h
�
A

�
!�

�
h
�
h
�
G(k�

�
A

�
!ik

�
A

	
)#�

�
F
�
, (2.23a)

��
�A

�

"�
�
	��h

�
h
�
A

�
!�

�
h
�
h
�
G(k�

�
A

�
!ik

�
A



)#�

�
F
�
, (2.23b)

��
�A

�

"�
�
	��h

�
h
�
A

�
!�

�
h
�
h
�
Ek�

�
A

�
#�

�
F
�
, (2.23c)

��
�A

�

"�
�
	��h

�
h
� �

h�
�

12
#

h�
�

12�A�
!�

�
h
�
h
�
Gk�

� �
h�
�

12
#

h�
�

12�A�
#�

�
(!F

�
y�#F

�
x�), (2.23d)

��
�A

	

"�
�
	��h

�
h
�

h�
�

12
A

	
!�

�
h
�
h
�
Ek�

�

h�
�

12
A

	
!�

�
h
�
h
�
G(A

	
#ik

�
A

�
)#�

�
F
�
x�, (2.23e)

��
�A




"�
�
	��h

�
h
�

h�
�

12
A



!�

�
h
�
h
�
Ek�

�

h�
�

12
A



!�

�
h
�
h
�
G(A



#ik

�
A

�
)#�

�
F
�
y�. (2.23f )

A set of linear equations for the amplitudes, with the external forces forming the right-hand
side, is obtained when the derivatives (2.23) are set equal to zero:

h
�
h
�
(	��!Gk�

�
)A

�
#h

�
h
�
Gik

�
A

	
"!F

�
, (2.24a)

h
�
h
�
(	��!Gk�

�
)A

�
#h

�
h
�
Gik

�
A



"!F

�
, (2.24b)

h
�
h
�
(	��!Ek�

�
)A

�
"!F

�
, (2.24c)

h
�
h
��

h�
�

12
#

h�
�

12� (	��!Gk�
�
)A

�
"F

�
y�!F

�
x�, (2.24d)

h
�
h
��	��

h�
�

12
!Ek�

�

h�
�

12
!G�A	

!h
�
h
�
Gik

�
A

�
"!F

�
x�, (2.24e)

h
�
h
� �	��

h�
�

12
!Ek�

�

h�
�

12
!G�A


!h
�
h
�
Gik

�
A

�
"!F

�
y�. (2.24f )

The matrix of this set of equations is relatively sparse, so the solutions can be obtained
analytically. The results are

A
�
"

!F
�
(	��(h�

�
/12)!G!Ek�

�
(h�

�
/12))#F

�
x�Gik

�
(EGh�

�
h
�
/12)(k�

�
!k�

�
)(k�

�
#k�

��
)

, (2.25a)
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A
�
"

!F
�
(	��(h�

�
/12)!G!Ek�

�
(h�

�
/12))#F

�
y�Gik

�
(EGh�

�
h
�
/12)(k�

�
!k�

�
)(k�

�
#k�

��
)

, (2.25b)

A
�
"

F
�

Eh
�
h
�
(k�

�
!k�

�
)
, (2.25c)

A
�
"

!y�F
�
#x�F

�
Gh

�
h
�
((h�

�
/12)#(h�

�
/12))(k�

�
!k�

�
)
, (2.25d)

A
	
"

!F
�
ik

�
#F

�
x� (k�

�
!k�

�
)

E (h�
�
h
�
/12)(k�

�
!k�

�
)(k�

�
#k�

��
)
, (2.25e)

A


"

!F
�
ik

�
#F

�
y�(k�

�
!k�

�
)

E (h�
�
h
�
/12)(k�

�
!k�

�
)(k�

�
#k�

��
)
. (2.25f )

As can be seen, the amplitudes are dependent on the wave number k
�
of the external force

distribution. A number of abbreviations have been used in equations (2.25) to denote the
various free wave numbers of a Timoshenko beam. They are

k
�
"	�

�
E

(compressional wave), (2.26a)

k
�
"	�

�
G

(torsional wave, also shear wave), (2.26b)

k
�

"�1

2�k��#k�
�
#�(k�

�
#k�

�
)�!4k�

��k��!

12

h�
�
��, (2.26c)
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�
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2�k��#k�
�
#�(k�

�
#k�

�
)�!4k�

��k��!

12

h�
�
�� (2.26d)

(propagating component of the bending wave with displacement in the x and y direction,
respectively),

k
��

"�1

2��(k�
�
#k�

�
)�!4k�

��k��!

12

h�
�
�!(k�

�
#k�

�
)�, (2.26e)

k
��

"�1

2��(k�
�
#k�

�
)�!4k�

��k��!

12

h�
�
�!(k�

�
#k�

�
)�. (2.26f )

k
��

and k
��

are not wave numbers, but the spatial decay rates of the near "eld of the bending
wave with displacement in the x and y direction respectively. They are real for small
frequencies, but become imaginary beyond the frequency where the torsional wavelength
becomes comparable to the beam thickness [15, p. 290]; this is a feature of a Timoshenko
beam that does not occur in an Euler beam.
If equations (2.25a}f ) are combined with equation (2.4a}f ), the beam's response to the

loading with z-dependence e��������� is fully determined.
The analysis in section 2.2 has been simpli"ed by restricting it to a rectangular beam,

which has a doubly symmetric cross-section. As a result, when the beam is unsupported, no
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coupling can exist between wave motion in any of the three linear directions and the
torsional rotation direction. This leads to the simplicity of equations (2.24). The equations
would be much more complicated if the cross-section had no axes of symmetry.

2.3. BEAM RESPONSE TO A POINT FORCE

A point force located at position z� can be written in terms of the �-function, which in turn
can be written in terms of its Fourier integral,

F�(z!z�)"
F

2� �
�

��

e���������dk
�
, (2.27)

where F is the force vector with components F
�
,F

�
, F

�
. The integral in equation (2.27)

represents a superposition of forces with distributions that have been considered in the
previous section; hence the displacements and angles resulting from the point force can be
represented by an equivalent superposition, e.g.,

�
�

"

1

2� �
�

��

A
�
(k

�
)e���������dk

�
, (2.28)

The amplitudes A
�
}A



depend on the wave number k

�
and have singularities at the free

wave numbers speci"ed in equations (2.26); this leads to singularities in the integrand.
Integrals of this type can be calculated with the calculus of residues. Two types of integrals
occur. The "rst is

I"
1

2� �
�

��

e���������

k�
�
!k�

�

dk
�
, (2.29)

and an equivalent integral with k
�
in place of k

�
. The calculation of this integral is shown in

reference [14, pp. 415}416], and the result is

I"
i

2k
�

e��� �z!z� �. (2.30)

This represents diverging waves, travelling away from the point z� where the excitation is
located. The second integral is

J"

1

2� �
�

��

f (k
�
)e���������

(k�
�
!k�

�
)(k�

�
#k�

��
)
dk

�
, (2.31)

and an equivalent integral with k
�

and k
��

in place of k
�

and k
��
. f (k

�
) stands for

a constant, or a linear or quadratic function of k
�
. f (k

�
) is either even or odd. The calculation

of J is shown explicitly in Appendix A. The result is

J"�
i

2(k�
�

#k�
��
) �

f (k
�
)e��� �z!z� �

k
�

!

f (ik
��
)e����

�z!z� �

ik
��

� for even f (k
�
)

i sgn(z!z�)
2(k�

�
#k�

��
) �

f (k
�
)e��� �z!z� �

k
�

!

f (ik
��
)e����

�z!z� �

ik
��

� for odd f (k
�
)

. (2.32)
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The expressions in equation (2.32) consist of a propagating wave and a near "eld. Both
diverge from the point z�.
The integrals, such as equation (2.28), of the amplitudesA

�
}A



can now be calculated, by

using equations (2.30) and (2.32). The results are
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!ik
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� . (2.33f )

The displacements (�, �, �) can be easily obtained by substituting equations (2.33) into
equations (2.1). This gives rise to three lengthy equations which show the dependence of
(�, �, �) on the force vector components (F

�
, F

�
, F

�
). The dependence is of the form (2.2), so

the elements of the Green function matrix can be read o! directly. The results are
summarized in the next section.
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2.4. ELEMENTS OF THE GREEN FUNCTION MATRIX

The elements of the Green function matrix are composed of free waves of torsion,
compression and bending (propagating and near"eld) in the x and y directions. These free
waves propagate along the beam away from the excitation point z�. Their amplitudes are
denoted by g with an upper-case subscript, which indicates the wave type, and two
lower-case subscripts, which refer to the matrix element; for example, g

���
is the amplitude

of the torsional wave occurring in the matrix elementG
��
. Some of the free-wave amplitudes

are co-ordinate dependent; such a dependence is indicated by the relevant arguments.
The elements of the Green function matrix are listed below, together with the amplitudes

of the relevant free waves:

G
��
(r; r�)"g

��
e��� �z!z� �

#g
���

e����
�z!z� �

#g
���

(y; y�)e��� �z!z� �, (2.34a)

with
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, (2.34b)
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G
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The free wave amplitudes satisfy the following relationships:
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Figure 3. Periodically supported Timoshenko beam.
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3. PERIODICALLY SUPPORTED TIMOSHENKO BEAM

3.1. SUPERPOSITION PRINCIPLE

Now a Timoshenko beam is considered, which has in"nitely many support points,
spaced regularly at positions x

�
, y

�
, z

�
(n"!R,2,R) along the beam axis (see Figure 3).

The integer n numbers the support points, and z
�
"nl, where l is the distance between

adjacent support points. These supports exert forces F
�
with components F

��
, F

��
, F

��
of the beam. Apart from these forces, there is also an external force, F

��
at point

(x
��
, y

��
, z

��
).

The beam motion can be described by applying the superposition principle (see also
reference [16]) which states that the response from all sleeper points and from the external
point force add up linearly to give the total response. The individual responses can be
expressed in terms of Green functions (see equation (2.2)), and one obtains for the lateral,
vertical and axial motion
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. (3.1)

For ease of notation, x and y have been dropped from the arguments and only the
z-dependence is explicitly stated.
The forces at the support points are reactive forces and can be related by an impedance to

the corresponding displacement,

F
��

"!Z
�
�(z

�
), F

��
"!Z

�
� (z

�
), F

��
"!Z

�
�(z

�
). (3.2a}c)



TABLE 1

Impedances for some support types; Z"force/displacement

Support type Impedance

Mass M Z"!M	�

Spring with sti!ness s Z"s

Mass/spring system Z"

M	�s

M	�!s

Spring/mass/spring system Z"

M	�s
�
!s

�
s
�

M	�!(s
�
#s

�
)
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The impedances can represent any type of support, such as masses, springs or combinations
of masses and springs. Examples are given in Table 1. Damping caused by the loss factor of
a spring can be introduced using a complex sti!ness.
Equations (3.1) and (3.2) can be combined. If the resulting equation is evaluated at all

support points z
�
, it represents a linear set of equations for the displacements

�(z
�
), � (z

�
), � (z

�
). These equations will be analyzed for the homogeneous case, where

external forces are absent. This gives the free waves on a periodically supported
Timoshenko beam. They are called Bloch waves here, to avoid confusion with the free
waves on a beam without supports. The non-homogeneous case, which is not considered
further in this paper, leads to results for the receptances.

3.2. BLOCH WAVES ON A PERIODICALLY SUPPORTED BEAM

The Bloch waves considered here are governed by the homogeneous version of equation
(3.1),
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Bloch's theorem [17] states that the free waves in a 1-D periodic system with repeat
length l propagate in such a way that the associated "eld quantities have a spatial
dependence e���l (m is an integer).  is the Bloch propagation constant; it is generally
complex,

"�!ik, (3.4)
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where � is the attenuation of waves in the periodic system, and k is the Bloch wave number.
This implies for the three displacements considered here

�(z
�
)"�

�
e����, �(z

�
)"�

�
e����, �(z

�
)"�

�
e���� (3.5a}c)

and equivalent expressions for the displacements at z
�
. �

�
, �

�
and �

�
are amplitudes.

Substitution of equation (3.5) and the Green functions of equations (2.34a),
(2.35a),2, (2.42a) into equations (3.3) leads to
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Multiplication of all three equations by e��l and change of the summation index fromm!n
to n, gives equations with sums that are combinations of geometric series. These sums can
hence be evaluated:
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, (3.7a)
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, (3.7c)
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. (3.7d)

In equations (3.7a) and (3.7b), k stands for any of the wave numbers k
�
, k

�
, k

�
, k

�
; in

equations (3.7c) and (3.7d), k stands for k
��

or k
��
.
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Equations (3.6) become, after use of equations (3.7),
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a
��

a
��

�
�

�
�

�
�

"0, (3.8)

with

a
��

"1#Z
��g��

!i sin k
�
l

cos k
�
l!cosh l

#g
���

sinh k
��
l

cosh k
��
l!cosh l

#g
���

!i sin k
�
l

cos k
�
l!cosh l�,

(3.9a)

a
��

"Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

, (3.9b)

a
��

"Z
��g��

sinh l
cos k

�
l!cosh l

#g
���

sinh l
cosh k

��
l!cosh l�, (3.9c)

a
��

"Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

, (3.9d)

a
��

"1#Z
��g��

!i sin k
�
l

cos k
�
l!cosh l

#g
���

sinh k
��
l

cosh k
��
l!cosh l

#g
���

!i sin k
�
l

cos k
�
l!cosh l�,

(3.9e)

a
��

"Z
� �g��

sinh l
cos k

�
l!cosh l

#g
���

sinh l
cosh k

��
l!cosh l�, (3.9f )

a
��

"Z
��g��

sinh l
cos k

�
l!cosh l

#g
���

sinh l
cosh k

��
l!cosh l�, (3.9g)

a
��

"Z
� �g��

sinh l
cos k

�
l!cosh l

#g
���

sinh l
cosh k

��
l!cosh l�, (3.9h)

a
��

"1#Z
��g���

!i sin k
�
l

cos k
�
l!cosh l

#g���
��

!i sin k
�
l

cos k
�
l!cosh l

#g���
���

sinh k
��
l

cosh k
��
l!cosh l

#g���
��

!i sin k
�
l

cos k
�
l!cosh l

#g���
���

sinh k
��
l

cosh k
��
l!cosh l� . (3.9i)

Equation (3.8) is a homogeneous linear set of equations and has non-trivial solutions only if
its determinant vanishes,

detA"0, (3.10)

where A stands for the 3�3 matrix in equation (3.8). When expanded, using expressions
(3.9a}i) for the matrix elements, this determinant condition contains terms cosh l and
sinh l, and is thus an implicit equation for the unknown Bloch wave number . This
equation contains several denominators originating from the use of equations (3.7). This
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indicates that  cannot take values such that cosh l"cos kl (k stands for k
�
, k

�
, k

�
, k

�
)

or cosh l"coshkl (k stands for k
��

or k
��
).

In order to solve for cosh l numerically, the expanded version of equation (3.10) is
multiplied by all denominators occurring in it. Further, sinh� l"cosh� l!1 is used to
substitute for sinh l, and one then obtains a polynomial equation of 11th degree in cosh l.
The degree 11 of the polynomial suggests that there are 11 roots for cosh l. This seems to
contradict the result of Mead [8], who found that the number of roots is equal to the
number of coupling co-ordinates. Here there are six coupling co-ordinates (the three
centreline displacements and three angles appearing in equation (2.1)), so the extra "ve
roots must be spurious. It can be shown that the extra "ve solutions are cos k

�
l, cos k

�
l,

coshk
��
l, cos k

�
l, cosh k

��
l, which have been excluded by the argument in the previous

paragraph. They are merely an artefact of multiplying equation (3.10) by the denominators
in equations (3.9a}i). Thus, the number of solutions is reconciled with Mead's "ndings.
Once all six solutions for cosh l have been found, the Bloch wave number  can be

determined from the inverse of the hyperbolic cosine,

l"ln(cosh l#�cosh� l!1)"ln �� �#i arctan �
Im(�)

Re(�)
#2��� , (3.11a)

where

�"cosh l#�cosh� l!1. (3.11b)

The "rst part of equation (3.11a) is based on equation (4.6.21), and the second part of
equation (3.11a) on equation (4.1.5) in reference [18].
There are in"nitely many solutions (�"0,$1,$2,2) di!ering by integer multiples of

2�. Only the case �"0 will be considered.
Equation (3.8) includes all six wave types that can occur on the beam. There may be cases

where fewer than six wave types are present, and such cases are described by reduced
versions of equation (3.8). Some such cases are considered below.

3.2.1. Compressional waves

This section considers the case where only compressional waves are present on the beam.
The absence of all other waves can be simulated by setting to zero all Green function
components, except for g

���
. The matrix in equation (3.8) then reduces to

A"

1 0 0

0 1 0

0 0 a
��

, (3.12)

with

a
��

"1#Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

. (3.13)

The determinant condition (3.10) gives

a
��

"0, (3.14)

from which

cosh l"cos k
�
l!Z

�
g
���

i sin k
�
l (3.15)
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can be derived easily. This is a polynomial of "rst degree, and there is one root for cosh l.
An equation equivalent to equation (3.15) with a mass impedance has been found by earlier
authors; see, e.g., reference [15, section 5.5.2].

3.2.2. ¹orsional waves

This section considers the case where only torsional waves with a displacement in the
xy-plane are present on the beam. All Green function components, except for
g
���

, g
���

, g
���

and g
���

are set to zero in order to simulate the absence of all but the
torsional waves. In addition, it is assumed that (x�, y�)O(0, 0), i.e., the support points are
o!set from the centreline, otherwise the torsional waves would not be a!ected by the
periodic supports. This scenario represents a mathematical idealization, in that it is
practically impossible to excite torsional waves while suppressing the coupling of torsional
and bending waves on the considered beam/support con"guration. The matrix in
equation (3.8) then reduces to

A"

a
��

a
��

0

a
��

a
��

0

0 0 1

, (3.16)

with

a
��

"1#Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

, (3.17a)

a
��

"Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

, (3.17b)

a
��

"Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

, (3.17c)

a
��

"1#Z
�
g
���

!i sin k
�
l

cos k
�
l!cosh l

. (3.17d)

The determinant condition (3.10) gives

a
��

a
��

!a
��

a
��

"0. (3.18)

After a few straightforward manipulations and use of equation (2.43a), a polynomial of
second degree for cosh l is obtained. One root is cosh l"cos k

�
l. This solution is not

allowed and is excluded by dividing the polynomial by (cos k
�
l!cosh l). The result is

cosh l"cos k
�
l!(Z

�
g
���

#Z
�
g
���

)i sin k
�
l. (3.19)

which is of the same structure as the result (3.15) found for purely compressional waves.

3.2.3. <ertical bending waves

This section considers the case where only bending waves in the y direction are present on
the beam. The absence of all other waves is simulated by setting to zero all Green function
components corresponding to these wave types. This leaves g

��
, g

���
, g

��
, g

���
, g

��
, g

���
.

In order to keep the calculations as simple as possible, it is also assumed that the support
points and observer points are at the centreline of the beam (y�"0 and y"0). Then the
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only non-zero Green function components are g
��

and g
���

, and the matrix in
equation (3.8) reduces to

A"

1 0 0

0 a
��

0

0 0 1

, (3.20)

with

a
��

"1#Z
��g��

!i sink
�
l

cos k
�
l!cosh l

#g
���

sinhk
��
l

cosh k
��
l!cosh l� . (3.21)

The determinant condition (3.10) gives

a
��

"0, (3.22)

from which

cosh� l

#cosh l[!cosh k
��
l!cos k

�
l#Z

�
(g

��
i sin k

�
l!g

���
sinh k

��
l)]

#cos k
�
l cosh k

��
l#Z

�
(!ig

��
sin k

�
l cosh k

��
l#g

���
sinh k

��
l cos k

�
l)"0

(3.23)

can be derived in a straightforward way. This is a polynomial of second degree, and there
are two roots for cosh l.
This case, too, has been considered by earlier authors, see, e.g., reference [15, section

5.5.3], where an alternative approach is used.

3.2.4. Horizontal and vertical bending waves

This section considers the case where bending waves with displacements in the x and
y direction, but no other wave types, are present on the beam. As in section 3.2.3, it is
assumed that the support points are at the centreline of the beam (x�"0, y�"0,
x"0, y"0). Then only the Green function components g

��
, g

���
, g

��
, g

���
need to be

taken into account. The matrix in equation (3.8) reduces to

A"

a
��

0 0

0 a
��

0

0 0 1

, (3.24)

with

a
��

"1#Z
��g��

!i sink
�
l

cos k
�
l!cosh l

#g
���

sinhk
��
l

cosh k
��
l!cosh l� , (3.25a)

a
��

"1#Z
��g��

!i sink
�
l

cos k
�
l!cosh l

#g
���

sinhk
��
l

cosh k
��
l!cosh l� . (3.25b)

The determinant condition (3.10) gives

a
��

a
��

"0, (3.26)
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from which

�cosh� l#cosh l[!cosh k
��
l!cos k

�
l#Z

�
(g

��
i sin k

�
l!g

���
sinh k

��
l)]

#cos k
�
l cosh k

��
l#Z

�
(!ig

��
sin k

�
l cosh k

��
l#g

���
sinh k

��
l cos k

�
l)�

��cosh� l#cosh l[!cosh k
��
l!cos k

�
l#Z

�
(g

��
i sin k

�
l!g

���
sinh k

��
l)]

#cos k
�
l cosh k

��
l#Z

�
(!ig

��
sin k

�
l cosh k

��
l#g

���
sinh k

��
l cos k

�
l)�"0

(3.27)

can be derived. This represents a product of two second degree polynomials, both of the
same form as equation (3.23); equation (3.27) has four roots for cosh l, and as the
factorized form of this equation shows, the horizontal and vertical bending waves are
uncoupled.

3.2.5. Horizontal/vertical bending and torsional waves

This section considers the case where horizontal bending waves, vertical bending waves
and torsional waves propagate along the periodically supported beam. Compressional
waves are absent, and this is modelled by setting g

���
"0. All other Green function

components are non-zero. In order to keep the calculations as simple as possible, it is also
assumed thatZ

�
"0. In section 3.2.4, the support points were on the centreline of the beam;

however, torsional waves would not be a!ected by such supports, so here the supports are
assumed to be o!-centre. The matrix A in the determinant condition (3.10) then reduces to

A"

a
��

a
��

0

a
��

a
��

0

a
��

a
��

1

, (3.28)

and this leads to

a
��

a
��

!a
��

a
��

"0. (3.29)

The matrix elements a
��
, a

��
, a

��
and a

��
are given by the full expressions (3.9a), (3.9b),

(3.9d) and (3.9e) respectively. A polynomial of sixth degree for cosh l can be derived from
equation (3.29). The manipulations are best done with an algebraic manipulation package.
The degree of the polynomial is 6, but the number of coupling co-ordinates is only
5 (displacements �

�
and �

�
, angles �

��
, �

��
, �

��
). This indicates the presence of a spurious

root for cosh l, which has to be excluded. It can be shown that this root is
cosh l"cos k

�
l, and this root is excluded by an appropriate polynomial division. The

result is

cosh	 l#a
	
cosh� l#b

	
cosh� l#c

	
cosh� l#d

	
cosh l#e

	
"0, (3.30)

which has "ve roots, as required. The coe$cients a
	
, b

	
, c

	
, d

	
, e

	
are listed in Appendix B.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. PROPERTIES OF THE PERIODICALLY SUPPORTED BEAM

For the numerical calculations, a steel beam is considered with the following material
properties: �"8000 kg/m� (mass density), E"2�10�� N/m� (Young's modulus), �"0)3



Figure 4. Compressional wave on a beam with mass supports: (a) attenuation spectrum; (b) Bloch wave number
spectrum.
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(Poisson ratio), and the following geometry: h
�
"0)09 m (beam width), h

�
"0)22 m (beam

height). A beam of this geometry has a lateral and vertical bending sti!ness which is similar
to that of a typical rail of European railway track.
The supports were spaced a distance l"0)6 m apart. Two support types were

considered: mass supports with a mass of 162 kg (sleeper mass) and spring supports
with sti!nesses s

�
"10�� N/m, s

�
"3�10�� N/m, s

�
"10�� N/m, in the lateral, vertical

and axial directions. These support properties, too, are typical of European railway
track.

4.2. NUMERICAL RESULTS FOR MASS SUPPORTS

The di!erent combinations of wave types that were the subject of sections 3.2.1}3.2.5, are
considered again here.

4.2.1. Compressional waves

The Bloch propagation constant  was calculated from equation (3.15) and is shown as
a function of frequency in Figure 4. Figure 4(a) gives the real part of , i.e., the attenuation of
the compressional wave; Figure 4(b) gives the imaginary part of , i.e., the Bloch wave
number. The attenuation spectrum shows bands of zero attenuation (passing bands)
alternating with bands of positive attenuation (stopping bands). The width of the bands is
related to the &&pinned}pinned frequency''; this is the frequency where half a wavelength (or
an integer multiple of half a wavelength) is equal to the repeat length l. For the

compressional wave considered here, the relevant wavelength is �
�
"(2�/	)�E/� (from

�
�
"2�/k

�
and equation (2.26a)), yielding a pinned}pinned frequency of 4166 Hz. This is

also the upper bound of the "rst stopping band.
The features in the Bloch wave number spectrum corresponding to passing bands and

stopping bands are bands of varying and bands of constant Bloch wave number. The
constant values are at k"0 and �/l.



Figure 5. Torsional wave on a beam with mass supports: (a) attenuation spectrum; (b) Bloch wave number
spectrum.
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4.2.2. ¹orsional waves

The Bloch propagation constant  was calculated from equation (3.19) and is shown as
a function of frequency in Figure 5. The support points were o! the centreline of the beam
at x�"h

�
/2 and y�"!h

�
/2. The attenuation spectrum (Figure 5(a)) shows alternating

passing and stopping bands, where the width of the passing bands decreases with increasing
frequency, and the width of the stopping bands increases. The combined width of
a passing/stopping band pair, however, is constant and equal to the pinned}pinned
frequency, which is 2584 Hz. This value has been calculated by equating half the torsional

wavelength, which is �
�
"(2�/	)�G/� (from �

�
"2�/k

�
and equation (2.26b)), to the

repeat length l. The spectrum of the Bloch wave number (Figure 5(b)) shows bands of
constant values, which are at k"0 and �/l, and bands of varying k, where k varies between
the two constant values.
The case of torsional waves is directly analogous to that of the compressional waves and

di!ers only by the scale along the frequency axis. The bands of torsional waves are narrower
than those of compressional waves because, at a given frequency, the torsional wavelength
is smaller than the compressional wavelength.

4.2.3. <ertical bending waves

The Bloch propagation constant  was calculated from equation (3.23), and the two
solutions are plotted as a function of frequency in Figure 6. The attenuation spectrum
(Figure 6(a)) shows that one of the two solutions is always attenuated (reminiscent of the
near"eld solution of a free beam without supports), and the other solution shows
a passing/stopping band behaviour. The near"eld solution has a Bloch wave number which
is zero throughout (see Figure 6(b)), the other solution shows the alternation of varying and
constant bands that were observed for compressional and torsional waves. In contrast to
compressional and torsional waves, the pinned}pinned frequencies and upper bounds of the
stopping bands are not equally spaced, but increase with increasing frequency.
Pinned}pinned frequencies are the frequencies where an integer multiple of half a bending



Figure 6. Vertical bending wave on a beam with mass supports: (a) attenuation spectrum; (b) Bloch wave
number spectrum.

Figure 7. Horizontal and vertical bending waves on a beam with mass supports: (a) attenuation spectrum;
(b) Bloch wave number spectrum.
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wavelength (from �
�

"2�/k
�
, where k

�
is given by equation (2.26d)) coincides with the

repeat length l. They occur at 1181, 3604, 6298 Hz, etc. The unequal spacing of the
pinned}pinned frequencies is due to the fact that bending waves have a non-linear
relationship between the free wave number and frequency.

4.2.4. Horizontal and vertical bending waves

The Bloch propagation constant  was calculated from equation (3.27), and the
attenuation and Bloch wave number are shown in Figures 7(a) and 7(b) respectively. Two of



COUPLED WAVES ON A PERIODIC BEAM 873
the four curves are identical to the curves in Figure 6, these represent vertical bending
waves. The other two curves represent horizontal bending waves. Horizontal and vertical
bending waves are uncoupled (see section 3.2.4), and so the corresponding Bloch waves
travel independently. The pinned}pinned frequencies of vertical bending waves are 1181,
3604 and 6298 Hz, as in section 4.2.3, and they coincide with the upper bounds of the
second, fourth and sixth stopping bands. The "rst, third and "fth stopping bands have
upper bounds of 549, 2032, 4094 Hz, respectively; these are the pinned}pinned frequencies
of horizontal bending waves.

4.2.5. Horizontal/vertical bending and torsional waves

The Bloch propagation constant  was calculated from equation (3.30), assuming that the
support points were positioned o!-centre at x�"h

�
/2 and y�"!h

�
/2. The spectra of

attenuation and Bloch wave number are shown in Figures 8(a) and 8(b) respectively. There
are "ve solutions. Two of them are near"eld solutions; the other three solutions show
passing/stopping band behaviour. In some frequency intervals, two of these three solution
curves coincide, and this is indicated in Figure 8(a) by an increased line thickness. The
attenuation is zero or positive in such intervals. In both cases, wave propagation takes place,
as indicated by the corresponding Bloch wave number, which is between 0 and �/l.
Frequency intervals of propagation and zero attenuation are clearly passing bands.
Frequency intervals of propagation and positive attenuation are neither passing nor stopping
bands, but a halfway house, called amber bands. Amber bands have been found by other
researchers, e.g., by Rebillard and Guyader [19], who studied wave coupling in periodic
systems. Where amber bands occur, there is strong coupling between di!erent wave types.
The common feature of all the spectra for mass supports is that at low frequencies, there is

a passing band. Higher frequencies are increasingly dominated by stopping bands.

4.3. NUMERICAL RESULTS FOR SPRING SUPPORTS

Now a beam is considered which is supported by springs instead of masses. The springs
have zero loss factor. Figures 9}13 show the attenuation spectra for the combinations of
Figure 8. Horizontal/vertical bending and torsional waves on a beam with mass supports: (a) attenuation
spectrum; (b) Bloch wave number spectrum.



Figure 9. Attenuation spectrum of a compressional wave on a beam with spring supports.

Figure 10. Attenuation spectrum of a torsional wave on a beam with spring supports.
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wave types discussed in sections 4.2.1}4.2.5. Again, the spectra show alternating stopping
and passing bands. The pinned}pinned frequencies are given by the same values as in the
corresponding sections 4.2.1}4.2.5. Amber bands are found in Figure 13; they can be
recognized by the increased line thickness.
A rigid beam on spring supports is a system that is (in contrast to one on mass supports)

able to resonate. For the beam/spring system considered here, the resonance frequency is
1266 Hz for motion in the lateral and axial direction, and 2193 Hz for motion in the vertical
direction. This leads to new features in the attenuation spectra. The spectra for the spring



Figure 11. Attenuation spectrum of a vertical bending wave on a beam with spring supports.

Figure 12. Attenuation spectrum of horizontal and vertical bending waves on a beam with spring supports.
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supports contrast with those for the mass supports in the following ways: below the
beam/spring resonance, the pinned}pinned frequencies coincide with the lower bounds of
the passing bands, and above that resonance, they coincide with the upper bounds of the
passing bands; the two near"eld solution curves associated with bending waves are no
longer clearly separated from the curves that show passing/stopping band behaviour
(compare Figures 11 and 12 with Figures 6 and 7, respectively); the passing band size
increases, rather than decreases, with increasing frequency, making it easier for the waves to
propagate unattenuated.



Figure 13. Attenuation spectrum of horizontal/vertical bending and torsional waves on a beam with spring
supports.
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Losses in the springs can be simulated by incorporating a loss factor � into the sti!nesses,
i.e., by using complex sti!nesses, e.g., s

�
Ps

�
(1!i�). Such losses would lead to a positive

attenuation in the passing bands. This attenuation increases with increasing loss factor.
Other supports, in particular mass/spring systems, which model the supports of a rail

more realistically, have been studied. Mass/spring systems can resonate and hence act like
a dynamic absorber with all the positive and negative bene"ts displayed by these devices.
A support consisting of a single mass and spring has a single resonance frequency. Below
this resonance frequency, each support behaves like a mass; the beam is then e!ectively
mass-supported, and the attenuation spectra resemble those of section 4.2. Above this
resonance frequency, each support behaves like a spring; the beam is then e!ectively
spring-supported, and the attenuation spectra resemble those shown in Figures 9}13.
Directly at this resonance frequency, each support becomes rigid (if it is undamped), and the
beam is e!ectively simply supported.
A support consisting of several springs and/or masses, has several resonance frequencies.

The support behaviour just below, just above and directly at any of these resonance
frequencies is again mass-like, spring-like, and rigid respectively. At certain intermediate
frequencies, the dynamic sti!ness of the supports vanishes. Waves then propagate on the
beam as if there were no supports at all.

5. CONCLUSIONS

A new approach based on Hamilton's principle, the superposition principle and Bloch's
theorem has been applied to model the free propagation of coupled waves on a periodically
supported Timoshenko beam. The beam was in"nitely long and had in"nitely many
supports. It could carry compressional waves, torsional waves, horizontal bending waves
and vertical bending waves. If a single wave type was present on the beam, its dispersion
relation spectrum showed a clear passing/stopping band behaviour, with passing/stopping
band pairs bounded by the pinned}pinned frequencies. If several wave types were present
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on the beam, they tended to be coupled by the supports, and waves coupled in this way can
behave very di!erently from a simple superposition of the individual wave types. The wave
coupling was pronounced if the position of the support points was o! the centreline of the
beam. Two support types have been examined in detail: mass and spring. More complex
support types, such as mass/spring systems, can be incorporated easily into the model.
Predictions have been made for a supported beam that represents a rail of a typical
European railway track.

ACKNOWLEDGMENTS

Part of this study (in particular sections 2.1}2.3) was supported by the ORE (now ERRI)
committee C 163.

REFERENCES

1. M. J. MUNJAL and M. HECKL 1982 Journal of Sound and <ibration 81, 491}500. Vibrations of
a periodic rail}sleeper system excited by an oscillating stationary transverse force.

2. U. J. KURZE 1997 AC;S¹ICA2Acta Acustica 83, 506}515. Re"ned calculations or improved
understanding of rail vibrations?

3. A. NORDBORG 1998 AC;S¹ICA2Acta Acustica 84, 280}288. Vertical rail vibrations: point
force excitation.

4. J.-F. HAMET 1999 AC;S¹ICA2Acta Acustica 85, 54}62. Railway noise: use of the Timoshenko
model in rail vibration studies.

5. D. J. MEAD and S. MARKUS 1983 Journal of Sound and <ibration 90, 1}24. Coupled
#exural}longitudinal wave motion in a periodic beam.

6. MARIA A. HECKL 1992 Fortschritte der Akustik (Proceedings of the DAGA192 Conference, Berlin
1992), 1033}1036. Excitation of coupled waves on a Timoshenko beam with equally-spaced
supports [in German].

7. D. J. MEAD 1996 Journal of Sound and <ibration 190, 495}524. Wave propagation in continuous
periodic structures: research contributions from Southampton, 1964}1995.

8. D. J. MEAD 1973 Journal of Sound and <ibration 27, 235}260. A general theory of harmonic wave
propagation in linear periodic systems with multiple coupling.

9. D. J. MEAD 1975 Journal of Sound and<ibration 40, 19}39. Wave propagation and natural modes
in periodic systems: II. Multi-coupled systems, with and without damping.

10. D. J. MEAD 1986 Journal of Sound and <ibration 104, 9}27. A new method of analysing wave
propagation in periodic structures: applications to periodic Timoshenko beams and sti!ened
plates.

11. B. R. MACE 1980 Journal of Sound and <ibration 73, 473}486. Periodically sti!ened #uid-loaded
plates, I: response to convected harmonic pressure and free wave propagation.

12. B. R. MACE 1980 Journal of Sound and <ibration 73, 487}504. Periodically sti!ened #uid-loaded
plates, II: response to line and point forces.

13. MARIA A. HECKL 1991 Report to the ORE (now ERRI) Committee C 163, Department of
Mathematics, Keele ;niversity, Keele, ;K. Acoustic behaviour of a periodically supported
Timoshenko beam.

14. P. M. MORSE and H. FESHBACH 1953 Methods of ¹heoretical Physics. New York: McGraw-Hill
Publishing Company.

15. L. CREMER and M. HECKL 1996 KoK rperschall. Berlin: Springer-Verlag; second edition.
16. MARIA A. HECKL 1995 Acustica 81, 559}564. Railway noise*can random sleeper spacings help?
17. L. BRILLOUIN 1946=ave Propagation in Periodic Structures. NewYork:McGraw-Hill Publishing

Company.
18. M. ABRAMOWITZ and I. A. STEGUN 1970Handbook of Mathematical Functions. New York: Dover

Publications.
19. E. REBILLARD and J. L. GUYADER 1997 Journal of Sound and<ibration 205, 337}354. Vibrational

behaviour of lattices of plates: basic behaviour and hypersensitivity phenomena.



878 M. A. HECKL
APPENDIX A: INTEGRAL CALCULATION

The aim is to calculate the integral

J"

1

2� �
�

��

f (k
�
)e���������

(k�
�
!k�

�
)(k�

�
#k�

��
)
dk

�
, (A1)

which appears in equation (2.31) of the main text. f (k
�
) is either a symmetrical or an

antisymmetrical function of k
�
.

The singularities in the integrand (see Figure A1) suggest using the calculus of residues to
determine the integral in equation (A1). This involves integration along a closed contour in
the complex k

�
-plane.

Case 1: z!z�(0
The integration contour chosen for this case is shown in Figure A2(a). The path along the

real k
�
-axis is closed by a semicircle in the lower half-plane with a radius tending towards

in"nity. The contribution to the integral along the semicircle vanishes, because z!z�(0.
The contour encloses the singularities at !k

�
and !ik

��
. The residues of the integrand at

these points are

Res(!k
�
)"

1

2�
f (!k

�
)e����������

!2k
�
(k�

�
#k�

��
)
,

Res(!ik
��
)"

1

2�
f (!ik

��
)e���������

2ik
��
(k�

�
#k�

��
)
.

The value of the integral J can then be written as

J"!2�i[Res(!k
�
)#Res(!ik

��
)]

"

i

2(k�
�

#k�
��
) �

f (!k
�
)e����������

k
�

!

f (!ik
��
)e���������

ik
��

� . (A2)

The minus sign in front of the term 2�i is due to the fact that the integration contour
is followed in the clockwise direction. The inclusion of the singularity !k

�
, rather

than k
�
, in the integration contour has led to a result representing waves travelling

away from, rather than towards, the excitation point. This is desirable from a physical point
of view.
Figure A1. Position of the singularities in the complex k
�
-plane.



Figure A2. Integration in the complex k
�
-plane: (a) for z!z�(0; (b) for z!z�*0.

COUPLED WAVES ON A PERIODIC BEAM 879
Case 2: z!z�*0
The integration contour along the real k

�
-axis is again closed by a semicircle (see

Figure A2(b)), but for the case z!z�*0, the upper half-plane is chosen to make sure that
there is no contribution to the integral along the semicircle. The contour encloses the
singularities at k

�
and ik

��
, and the residues at these points are

Res(k
�
)"

1

2�
f (k

�
)e���������

2k
�
(k�

�
#k�

��
)
,

Res(ik
��
)"

1

2�
f (ik

��
)e����������

!2ik
��
(k�

�
#k�

��
)
.

Taking into account the anti-clockwise direction of integration, one can write the integral
J as

J"2�i[Res(k
�
)#Res(ik

��
)]

"

i

2(k�
�

#k�
��
) �

f (k
�
)e���������

k
�

!

f (ik
��
)e����������

ik
��

� . (A3)

The propagating wave is represented by a term describing propagation in the positive
z direction, i.e., away from the excitation point.
The "nal result, which includes both cases, z!z�(0 and *0, can be written as

a summary of equations (A2) and (A3). For symmetric functions with f (k
�
)"f (!k

�
), one

obtains

J"

i

2(k�
�

#k�
��
) �

f (k
�
)e��� �z!z� �

k
�

!

f (ik
��
)e����

�z!z� �

ik
��

� , (A4)

and for anti-symmetric functions with f (k
�
)"!f (!k

�
), one obtains

J"

i sgn(z!z�)
2(k�

�
#k�

��
) �

f (k
�
)e��� �z!z� �

k
�

!

f (ik
��
)e����

�z!z� �

ik
��

� . (A5)
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APPENDIX B: POLYNOMIAL COEFFICIENTS

The following abbreviations are used:

c
�

"cos k
�
l , s

�
"sin k

�
l, (B1a, b)

c
��

"cosh k
��
l , s

��
"sinh k

��
l, (B2a, b)

c
�

"cos k
�
l , s
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"sin k

�
l, (B3a, b)

c
��

"cosh k
��
l , s

��
"sinh k

��
l, (B4a, b)

c
�
"cos k

�
l , s

�
"sin k

�
l. (B5a, b)

The polynomial in equation (3.30) has been obtained by dividing the sixth-degree
polynomial

cosh
 l#a


cosh	 l#b



cosh� l#c



cosh� l#d



cosh� l#e



cosh l#f



"0,

(B6)

by (cosh l!c
�
). Hence the coe$cients a

	
, b

	
, c

	
, d

	
and e

	
are given by
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